IHC Made Affordable ## Catenin, B Rabbit Polyclonal Antibody RP080 PDR060 PDR060-10RP Document #: DS-0047-C Effective Date: 09/01/2016 | Immunogen | Species | Primary
Antibody Diluent | |--|---------|-----------------------------| | A synthetic peptide derived from the middle of β -catenin protein. | Rabbit | K004 | Lot specific Ig concentration available upon request. | Catalog # | Description | |-------------|--| | RP080 | Concentrated antibody for use with Diagnostic BioSystems
PolyVue™ Plus - Two Step Detection System | | PDR060 | Ready to use antibody for use with Diagnostic BioSystems
PolyVue™ Plus - Two Step Detection System | | PDR060-10RP | Ready to use antibody for use with Diagnostic BioSystems
Montage PolyVue Plus™ Auto Detection System & Montage™
360 System | #### **Intended Use** For In Vitro Diagnostic Use. This product is intended for qualitative immunohistochemistry with normal and neoplastic formalin-fixed, paraffinembedded tissue sections, to be viewed by light microscopy. Clinical interpretation of staining results should be accompanied by histological studies with proper controls. Patients' clinical histories and other relevant diagnostic tests should be utilized by a qualified person(s) when evaluating and interpreting results. ### **Summary and Explanation** The catenins are structurally related cytoplasmic proteins which have been classified as alpha (α), beta (β), and gamma (γ), these proteins can bind to the highly conserved, intracellular cytoplasmic tail of E-cadherin. Together, the catenin/cadherin complexes play an important role mediating cellular adhesion. β -catenin associates with the cytoplasmic portion of E-cadherin, which is necessary for the function of E-cadherin as an adhesion molecule. β -catenin has also been found in complexes with the tumor suppressor protein APC. In normal tissues, $\boldsymbol{\beta}$ -catenin is localized to the membrane of epithelial cells, consistent with its role in the cell adhesion complex. In breast ductal neoplasia, β-catenin is usually localized in cellular membranes. However, in lobular neoplasia, a marked redistribution of β-catenin throughout the cytoplasm results in a diffuse cytoplasmic pattern. Immuno-staining of β -catenin and E-cadherin is helps in the accurate identification of ductal and lobular neoplasms, including a distinction between low-grade ductal carcinoma in situ (DCIS) and lobular carcinoma. Additionally, some rectal and gastric adenocarcinomas demonstrate diffuse cytoplasmic \(\beta \)-catenin staining and a lack of membranous staining, mimicking the staining pattern observed with lobular breast carcinomas. #### Format Purified immunoglobulin fraction of rabbit antiserum against human ß-catenin containing sodium azide as a preservative. #### **Principles of the Procedures** Antigen detection by immunohistochemistry (IHC) is a two-step process involving first, the binding of a primary antibody to the antigen of interest, and second, the detection of bound antibody by a chromogen. The primary antibody may be used in IHC using manual techniques or using Diagnostic BioSystems Automated Montage 360™ Staining System. #### **Dilution of Primary Antibody** Diagnostic BioSystems ready to use antibodies have been optimized for use with the recommended Diagnostic BioSystems Detection System and do not require further dilution. Further dilution may result in loss of sensitivity. The user must validate any such change. Diagnostic BioSystems concentrated antibodies must be diluted in accordance with the staining procedure when used with the recommended Diagnostic BioSystems detection system. Use of any detection methods other than the recommended systems and protocols require validation by the user. Antibody dilutions should be appropriately adjusted and verified according to the detection system used. #### **Materials Required But Not Provided** Some of the reagents and materials required for IHC are not provided. Pretreatment reagents, detection systems, control reagents and other ancillary reagents are available from Diagnostic BioSystems. Please refer to the Diagnostic BioSystems website at www.dbiosys.com #### Storage and Handling Store at 2-8°C. This antibody is suitable for use until the expiration date when stored at 2-8°C. Do not use product after the expiration date printed on vial. If reagents are stored under conditions other than those specified here, they must be verified by the user. Diluted reagents should be used promptly. Unused portions of antibody preparation should be discarded after one day. The presence of precipitate or an unusual odor indicates that the antibody is deteriorating and should not be used. Positive and negative controls should be run simultaneously with all patient specimens. If unexpected staining is observed which cannot be explained by variations in laboratory procedures and a problem with the antibody is suspected, contact Diagnostic BioSystems Technical Support at (925) 484-3350, extension 2 or techsupport@dbiosys.com. ### **Specimen Collection and Preparation** Tissues fixed in 10% formalin are suitable for use prior to paraffin embedding. Consult references (Kiernan, 1981: Sheehan & Hrapchak, 1980) for further details on specimen preparation. The user is advised to validate the use of the products with their tissue specimens prepared and handled in accordance with their laboratory practices. #### **Precautions** This antibody contains less than 0.1% sodium azide. Concentrations less than 0.1% are not reportable hazardous materials according to U.S. 29 CFR 1910.1200, OSHA Hazard Communication and EC Directive 91/155/EC. Sodium azide (NaN3) used as a preservative is toxic if ingested. Sodium Diagnostic BioSystems # **IHC Made Affordable** azide may react with lead and copper plumbing to form highly explosive metal azides. Upon disposal, flush with large volumes of water to prevent azide build-up in plumbing. (Center for Disease Control, 1976, National Institute of Occupational Safety and Health, 1976). Specimens, before and after fixation and all materials exposed to them, should be handled as if capable of transmitting infection and disposed of with proper precautions. Never pipette reagents by mouth and avoid contacting the skin and mucous membranes with reagents and specimens. If reagents or specimens come in contact with sensitive areas, wash with copious amounts of water. Microbial contamination of reagents may result in an increase in nonspecific staining. Incubation times or temperatures other than those specified may give erroneous results. The user must validate any such change. The MSDS is available upon request. #### **Treatment of Tissues Prior to Staining** Place the slides in the recommended antigen retrieval solution using Diagnostic BioSystems Montage Opus™ Antigen Retrieval System. Allow slides to cool down for 20 minutes prior to staining. #### **Staining Procedure** Refer to the following table for conditions specifically recommended for this antibody. Refer to the Diagnostic BioSystems PolyVue™ Plus—Two Step Detection System or Montage PolyVue Plus™ Auto Detection System for guidance on specific staining protocols or other requirements. | Parameter | Diagnostic BioSystems Recommendations | | |-------------------------------|---|--| | Positive Control | Breast carcinoma, Large intestine | | | Concentrated Dilution | 1:50-1:100 | | | Pretreatment | EDTA Buffer pH 8.0 | | | Incubation Time & Temperature | 30 min @ RT | | | Detection System | PolyVue™ Plus - Two Step Detection System or
Montage PolyVue Plus™ Auto Detection System
for Montage 360 System | | | Tissue Type | FFPE | | ### **Quality Control** Refer to CLSI Quality Standards for Design and Implementation of Immunohistochemistry Assays; Approved Guideline-Second edition (I/LA28-A2) CLSI Wayne, PA USA (www.clsi.org). 2011. #### **Troubleshooting** Contact Diagnostic BioSystems Technical Support at (925) 484-3350, extension 2, techsupport@dbiosys.com or your local distributor to report unusual staining. #### **Cellular Localization** Cytoplasm and cell membrane #### **Limitations of the Procedure** Immunohistochemistry is a complex technique involving both histological and immunological detection methods. Tissue processing and handling prior to immunostaining can also cause inconsistent results. Variations in fixation and embedding or the inherent nature of the tissue may cause variations in results (Nadji and Morales, 1983). Endogenous peroxidase activity or pseudoperoxidase activity in erythrocytes and endogenous biotin may cause non-specific staining depending on detection system used. Tissues containing Hepatitis B surface Antigen (HBsAg) may give a false positive with horseradish peroxidase systems (Omata et al, 1980). Improper counterstaining and mounting may compromise the interpretation of results. #### **Performance Characteristics** The optimum antibody dilution and protocols for a specific application can vary. These include, but are not limited to: fixation, heat-retrieval method, incubation times, and tissue section thickness and detection kit used. Due to the superior sensitivity of these unique reagents, the recommended incubation times and titers listed are not applicable to other detection systems, as results may vary. The data sheet recommendations and protocols are based on exclusive use of Diagnostic BioSystems products. Ultimately, it is the responsibility of the investigator to determine optimal conditions. These products are tools that can be used for interpretation of morphological findings in conjunction with other diagnostic tests and pertinent clinical data by a qualified pathologist. #### References - Koslov et al.; J Biol Chem 272 (43): 27301, 1997. - Dabbs DJ et. al.; Am J Surg Path. 2007;31:427-437 - iii) Hazan et al. ;J Biol Chem 272 (51): 32448, 1997. - Bracke ME, et al.; Cur Top Microbiol Immunol 1996;213 (Pt1):123-61 - Mastracci TL et. al.; Mod Path. 2005;18:741-751. www.dbiosys.com