• SKU DIA-310
    Specificity

    CD31 (PECAM-1)

    Species Reactivity

    Mouse, Swine

    Immunogen

    Murine amino acid fragment (amino acids 610-681 of mouse CD31)

    Host Species

    Rat

    Isotype

    IgG2a

    Clone

    SZ31

    Clonality (Mono-/Polyclonal)

    monoclonal

    Application

    Immunocytochemistry, Immunofluorescence, Immunohistochemistry (frozen sections), Immunohistochemistry (IHC), Immunohistochemistry (Paraffin-embedded Sections), Western Blot

    Conjugation

    unconjugated

    Dilution

    Immunohistochemistry (IHC): 1:20, Western Blot (WB): 1:5,000

    Format

    0.05% NaN3, 2% BSA, in PBS (pH 7.4), lyophilisate, purified antibody (from culture supernatant)

    Application Note

    No Crossreactivity with human CD31

    Product line / Topic

    Angiogenesis, CD Markers

    Intended Use

    for Research Use Only

    Temperature - Storage

    2-8°C

    Temperature - Transport

    at room temperature

    Search Code

    DIA310

    Manufacturer / Brand

    dianova

    Uniprot_ID

    Q08481

    Gene_ID

    18613

    Alias

    CD31, EndoCAM, GPIIA', PECA1, Pecam, Pecam-1, Pecam1, Platelet endothelial cell adhesion molecule, Platelet/Endothelial Cell Adhesion Molecule, Platelet/Endothelial Cell Adhesion Molecule 1

  • Reactivity:

    Antibody clone SZ31 is the first antibody which reacts specifically with murine CD31 in formalin-fixed paraffin-embedded tissue sections. Clone SZ31 shows no cross-reactivity to human CD31.

    Outstanding specificity of clone SZ31 has been confirmed in more than 185 citations (CiteAB).

    Background:

    CD31, also known as PECAM-1 (Platelet Endothelial Cell Adhesion Molecule-1) is expressed constitutively on the surface of embryonic and adult endothelial cells. It is also expressed on cell surfaces of monocytes, neutrophils, platelets and certain T-cell subsets. It has been detected on bone marrow-derived hematopoetic stem cells and embryonic stem cells. Cluster of Differentiation 31 (CD31) is a 130kDa integral membrane glycoprotein and as a member of the immunoglobulin superfamily involved in the mediation of cell-to-cell adhesion. CD31-mediated endothelial cell-cell interactions play a major role in angiogenesis. Studies have shown CD31 to be a superior marker in human angiogenesis, which reportedly predicts tumor recurrence. Pathophysiological studies of CD31 in murine model systems had limitations because standard formalin-fixed sections were excluded. The clone SZ31 (Anti-CD31) eliminates these restrictions by allowing high quality immunohistochemical analysis of standard formalin-fixed paraffin sections in mice.

    Immunohistochemistry of mouse CD31 (PECAM-1) in formalin-fixed paraffin-embedded tissue sections

    The monoclonal antibody clone SZ31 reacts specifically with endothelial cells in vessels and capillaries of:

    Immunohistochemical staining (IHC) with anti-CD31 (PECAM-1) Antibody (clone SZ31) - dianova

    aorta

    Immunohistochemical staining (IHC) with anti-CD31 (PECAM-1) Antibody (clone SZ31) - dianova

    aortic origin

    Immunohistochemical staining (IHC) with anti-CD31 (PECAM-1) Antibody (clone SZ31) - dianova

    endocardium

    Immunohistochemical staining (IHC) with anti-CD31 (PECAM-1) Antibody (clone SZ31) - dianova

    small intestine

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of small intestine from mice (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren des Dünndarm aus der Maus (FFPE Gewebe).

    small intestine

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse colon (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren des Dickdarm aus der Maus (FFPE Gewebe).

    colon

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse brain (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren des Mäuse Gehirn (FFPE Gewebe).

    brain

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse lymph nodes (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren von Lymphknoten der Maus (FFPE Gewebe).

    lymph nodes

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse bone marrow (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren im Knochenmark der Maus (FFPE Gewebe).

    bone marrow

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mesenteric vessels from mice (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren in mesenterialen Gefäße der Maus (FFPE Gewebe).

    mesenterial vessels

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse kidney (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren der Mäuse Niere (FFPE Gewebe).

    kidney

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse pancreas (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren des Mäuse Pankreas (FFPE Gewebe).

    pancreas

    (pictures courtesy of Prof. Dr. Robert Klopfleisch, Institute of Pathology, Department of Veterinary Pathology, Berlin, Germany)

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse lung (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren der Mäuse Lunge (FFPE Gewebe).

    Lung

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse muscle (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren im Muskelgewebe der Maus (FFPE Gewebe).

    Muscle

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse spinal (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren im Spinal der Maus (FFPE Gewebe).

    Spinal

    The monoclonal antibody clone SZ31 (DIA-310) reacts specifically with endothelial cells in vessels and capillaries of mouse liver (FFPE tissue). Der monoklonale Antikörper Klon SZ31 (DIA-310) reagiert spezifisch mit Endothelzellen in Gefäßen und Kapillaren in der Mäuse Leber (FFPE Gewebe).

    Liver

    Immunohistochemical staining (IHC) with anti-CD31 (PECAM-1) Antibody (clone SZ31) - dianova

    Adenocarcinoma

    Immunohistochemical staining (IHC) with anti-CD31 (PECAM-1) Antibody (clone SZ31) - dianova

    Adenocarcinoma

    (pictures courtesy of Prof. Dr. H. Stein, Institute of Pathology, Charité Campus Benjamin Franklin, Berlin, Germany)

    Western Blot analysis

    Immunoblot of extracts from murine lung, J558L cells and m-Lend cells using CD31 rat monoclonal antibody clone SZ31 (DIA-310 1:5.000) and goat anti-rat-HRP antibody (1:10.000).

    Western blot detection (WB) with anti-CD31 (PECAM-1) Antibody (clone SZ31) - dianova

    Lane:

    1. J558 cells (CD31-), 25μg lysate
    2. murine lung, 25μg lysate
    3. blank
    4. m-Lend cells (CD31+), 12.5μg lysate

    Specific References:

    1. Kim K, Watson PA, Lebdai S, Jebiwott S, Somma A, La Rosa SP, Mehta D, Murray KS, Lilja HG, Ulmert D, Monette S, Scherz AJ, Coleman J. Androgen Deprivation Therapy Potentiates the Efficacy of Vascular Targeted Photodynamic Therapy of Prostate Cancer Xenografts. Clin Cancer Res. 2018 Feb 20; PMID: 29463549
    2. de Jong RJ, Paulin N, Lemnitzer P, Viola JR, Winter C, Ferraro B, Grommes J, Weber C, Reutelingsperger C, Drechsler M, Soehnlein O. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017 Feb;37(2):312–315. PMID: 28062503
    3. Looney AP, Han R, Stawski L, Marden G, Iwamoto M, Trojanowska M. Synergistic Role of Endothelial ERG and FLI1 in Mediating Pulmonary Vascular Homeostasis. Am J Respir Cell Mol Biol. 2017;57(1):121–131. PMCID: PMC5516275
    4. Matsuki M, Adachi Y, Ozawa Y, Kimura T, Hoshi T, Okamoto K, Tohyama O, Mitsuhashi K, Yamaguchi A, Matsui J, Funahashi Y. Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus. Cancer Sci. 2017 Apr;108(4):763–771. PMCID: PMC5406533
    5. Yanagida K, Liu CH, Faraco G, Galvani S, Smith HK, Burg N, Anrather J, Sanchez T, Iadecola C, Hla T. Size-selective opening of the blood–brain barrier by targeting endothelial sphingosine 1–phosphate receptor 1. PNAS. 2017 Apr 25;114(17):4531–4536. PMID: 28396408
    6. Zaccagnino A, Managò A, Leanza L, Gontarewitz A, Linder B, Azzolini M, Biasutto L, Zoratti M, Peruzzo R, Legler K, Trauzold A, Kalthoff H, Szabo I. Tumor-reducing effect of the clinically used drug clofazimine in a SCID mouse model of pancreatic ductal adenocarcinoma. Oncotarget. 2017 Jun 13;8(24):38276–38293. PMCID: PMC5503532
    7. Stout-Delgado HW, Cho SJ, Chu SG, Mitzel DN, Villalba J, El-Chemaly S, Ryter SW, Choi AMK, Rosas IO. Age-Dependent Susceptibility to Pulmonary Fibrosis Is Associated with NLRP3 Inflammasome Activation. Am J Respir Cell Mol Biol. 2016;55(2):252–263. PMCID: PMC4979364
    8. Rovithi M, de Haas RR, Honeywell RJ, Poel D, Peters GJ, Griffioen AW, Verheul HMW. Alternative scheduling of pulsatile, high dose sunitinib efficiently suppresses tumor growth. J Exp Clin Cancer Res. 2016 Sep 7;35(1):138. PMCID: PMC5013589
    9. Rossi E, Gerges I, Tocchio A, Tamplenizza M, Aprile P, Recordati C, Martello F, Martin I, Milani P, Lenardi C. Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications. Biomaterials. 2016;104:65–77. PMID: 27428768
    10. Shami A, Knutsson A, Dunér P, Rauch U, Bengtsson E, Tengryd C, Murugesan V, Durbeej M, Gonçalves I, Nilsson J, Hultgårdh-Nilsson A. Dystrophin deficiency reduces atherosclerotic plaque development in ApoE-null mice. Sci Rep. 2015 Sep 8;5:13904. PMCID: PMC4561962
    11. Goumas FA, Holmer R, Egberts J-H, Gontarewicz A, Heneweer C, Geisen U, Hauser C, Mende M-M, Legler K, Röcken C, Becker T, Waetzig GH, Rose-John S, Kalthoff H. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int J Cancer. 2015 Sep 1;137(5):1035–1046. PMID: 25604508
    12. Yue GG-L, Lee JK-M, Kwok H-F, Cheng L, Wong EC-W, Jiang L, Yu H, Leung H-W, Wong Y-L, Leung P-C, Fung K-P, Lau CB-S. Novel PI3K/AKT targeting anti-angiogenic activities of 4-vinylphenol, a new therapeutic potential of a well-known styrene metabolite. Sci Rep. 2015 Jun 8;5:11149. PMCID: PMC4459151
    13. Nowak-Sliwinska P, Weiss A, van Beijnum JR, Wong TJ, Kilarski WW, Szewczyk G, Verheul HMW, Sarna T, van den Bergh H, Griffioen AW. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition. Cell Death Dis. 2015 Feb 12;6:e1641. PMCID: PMC4669819
    14. Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kühl AA. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7(8):4557–4576. PMCID: PMC4152019
    15. El-Gazzar A, Cai X, Reeves RS, Dai Z, Caballero-Benitez A, McDonald DL, Vazquez J, Gooley TA, Sale GE, Spies T, Groh V. Effects on tumor development and metastatic dissemination by the NKG2D lymphocyte receptor expressed on cancer cells. Oncogene. 2014 Oct 9;33(41):4932–4940. PMCID: PMC3994187
    16. Kono M, Tucker AE, Tran J, Bergner JB, Turner EM, Proia RL. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. J Clin Invest. 2014 May;124(5):2076–2086. PMCID: PMC4001537
    17. Sun X, He S, Wara AKM, Icli B, Shvartz E, Tesmenitsky Y, Belkin N, Li D, Blackwell TS, Sukhova GK, Croce K, Feinberg MW. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res. 2014 Jan 3;114(1):32–40. PMCID: PMC4051320
    18. Becker MO, Kill A, Kutsche M, Guenther J, Rose A, Tabeling C, Witzenrath M, Kühl AA, Heidecke H, Ghofrani HA, Tiede H, Schermuly RT, Nickel N, Hoeper MM, Lukitsch I, Gollasch M, Kuebler WM, Bock S, Burmester GR, Dragun D, Riemekasten G. Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am J Respir Crit Care Med. 2014 Oct 1;190(7):808–817. PMID: 25181620
    19. Copeland BT, Bowman MJ, Ashman LK. Genetic ablation of the tetraspanin CD151 reduces spontaneous metastatic spread of prostate cancer in the TRAMP model. Mol Cancer Res. 2013 Jan;11(1):95–105. PMID: 23131993
    20. Yabuuchi S, Pai SG, Campbell NR, de Wilde RF, De Oliveira E, Korangath P, Streppel MM, Rasheed ZA, Hidalgo M, Maitra A, Rajeshkumar NV. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013 Jul 10;335(1):41–51. PMCID: PMC3665739
    21. Ferretti E, Montagna D, Di Carlo E, Cocco C, Ribatti D, Ognio E, Sorrentino C, Lisini D, Bertaina A, Locatelli F, Pistoia V, Airoldi I. Absence of IL-12Rβ2 in CD33(+)CD38(+) pediatric acute myeloid leukemia cells favours progression in NOD/SCID/IL2RγC-deficient mice. Leukemia. 2012 Feb;26(2):225–235. PMID: 21844875
    22. Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A, Ortega N, Girard J-P. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol. 2012 Apr 1;188(7):3488–3495. PMID: 22371395
    23. Jiang J, Thyagarajan-Sahu A, Krchňák V, Jedinak A, Sandusky GE, Sliva D. NAHA, a novel hydroxamic acid-derivative, inhibits growth and angiogenesis of breast cancer in vitro and in vivo. PLoS ONE. 2012;7(3):e34283. PMCID: PMC3315582
    24. Nishimura R, Wakabayashi M, Hata K, Matsubara T, Honma S, Wakisaka S, Kiyonari H, Shioi G, Yamaguchi A, Tsumaki N, Akiyama H, Yoneda T. Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with transcription factor Runx2 during endochondral ossification. J Biol Chem. 2012 Sep 28;287(40):33179–33190. PMCID: PMC3460424
    25. Kramer-Marek G, Gijsen M, Kiesewetter DO, Bennett R, Roxanis I, Zielinski R, Kong A, Capala J. Potential of PET to predict the response to trastuzumab treatment in an ErbB2-positive human xenograft tumor model. J Nucl Med. 2012 Apr;53(4):629–637. PMID: 22410461
    26. Martin-Padura I, Marighetti P, Agliano A, Colombo F, Larzabal L, Redrado M, Bleau A-M, Prior C, Bertolini F, Calvo A. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab Invest. 2012 Jul;92(7):952–966. PMID: 22546866
    27. Hölscher M, Silter M, Krull S, von Ahlen M, Hesse A, Schwartz P, Wielockx B, Breier G, Katschinski DM, Zieseniss A. Cardiomyocyte-specific prolyl-4-hydroxylase domain 2 knock out protects from acute myocardial ischemic injury. J Biol Chem. 2011 Apr 1;286(13):11185–11194. PMCID: PMC3064173
    28. Kröger C, Vijayaraj P, Reuter U, Windoffer R, Simmons D, Heukamp L, Leube R, Magin TM. Placental vasculogenesis is regulated by keratin-mediated hyperoxia in murine decidual tissues. Am J Pathol. 2011 Apr;178(4):1578–1590. PMCID: PMC3078447
    29. Agliano A, Martin-Padura I, Marighetti P, Gregato G, Calleri A, Prior C, Redrado M, Calvo A, Bertolini F. Therapeutic effect of lenalidomide in a novel xenograft mouse model of human blastic NK cell lymphoma/blastic plasmacytoid dendritic cell neoplasm. Clin Cancer Res. 2011 Oct 1;17(19):6163–6173. PMID: 21856771
    30. Anania MC, Sensi M, Radaelli E, Miranda C, Vizioli MG, Pagliardini S, Favini E, Cleris L, Supino R, Formelli F, Borrello MG, Pierotti MA, Greco A. TIMP3 regulates migration, invasion and in vivo tumorigenicity of thyroid tumor cells. Oncogene. 2011 Jul 7;30(27):3011–3023. PMID: 21339735
    31. Gramann M, Wendler O, Haeberle L, Schick B. Prominent collagen type VI expression in juvenile angiofibromas. Histochem Cell Biol. 2009 Jan;131(1):155–164. PMID: 18797915
  • SZ31_aorta
    Aorta
    SZ31_aortic-origin
    Aortic-origin
    SZ31_bone-marrow
    Bone-Marrow
    SZ31_brain
    Brain
    SZ31_colon
    Colon
    SZ31_endocardium
    Endocardium
    SZ31_kidney
    Kidney
    SZ31_Liver
    Liver
    SZ31_Lung
    Lung
    SZ31_lymph-nodes
    Lymph-nodes
    SZ31_mesenterial-vessels
    Mesenteric vessels
    SZ31_Mouse_Ca_1
    Murine adenocarcinoma
    SZ31_Mouse_Ca_2
    Murine adenocarcinoma 2
    SZ31_Muscle
    Skeletal muscle
    SZ31_pancreas
    Pancreas
    SZ31_small-intestine-A
    Small intestine
    SZ31_small-intestine-B
    Small intestine 2
    SZ31_Spinal
    Spinal Cord
    SZ31_Western-Blot
    Western-Blot